Back to Search
Start Over
Insights into seed coats of nine cultivars of Australian lupin: Unravelling LC-QTOF MS-based biochemical profiles, nutritional, functional, antioxidant, and antidiabetic properties together with rationalizing antidiabetic mechanism by in silico approaches
- Source :
-
Food Research International . Nov2024, Vol. 195, pN.PAG-N.PAG. 1p. - Publication Year :
- 2024
-
Abstract
- [Display omitted] • Australian lupin seed coats are rich in dietary fibers and bioactive metabolites. • Functional properties of lupin seed coats related to cooking are promising. • Phenolic and flavonoids in lupin seed coats impart excellent antioxidant property. • Cultivars of L. angustifolius inhibit human pancreatic α-amylase and α-glucosidase. • Diverse health benefits may attain by inclusion of seed coats as "whole grain lupin". Lupins, and other legumes, have attained international interest due to their reported remarkable health benefits. Currently, the seed coats are discarded as waste or animal feed. The research presented here summarizes the potential for incorporating the seed coats into 'whole grain' foods. We aimed to identify metabolites found in the seed coats of nine commercial Australian cultivars of lupin (Lupinus angustifolius and L. albus species), and to evaluate and compare their functional, nutritional, antioxidant, and antidiabetic properties, along with in silico exploration of mechanisms of action for selected identified secondary metabolites. The seed coats were found to contain 79 to 90% dietary fibers and substantial quantity of essential macrometals. LC-QTOF MS-based, untargeted bioactive metabolite profiling explored a total of 673 chemical entities, and identified 63 bioactive secondary metabolites including: biophenols, unsaturated fatty acids, triterpenoids, alkaloids, and dietary prebiotics (insoluble fibers). The seed coats from these nine cultivars show substantial antioxidant activity. The cultivars of L. angustifolius inhibit α-amylase and α-glucosidase significantly in vitro. Moreover, in silico docking and dynamic simulation along with ADME/T analysis suggest that quercetin 3-methyl ether and 8-C-methylquercetin 3-methyl ether as molecules, novel in lupin seed coats, are responsible for the α-amylase and α-glucosidase inhibition. The findings indicated that lupin seed coats might be beneficial food components, rather than be discarded as 'mill waste' [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09639969
- Volume :
- 195
- Database :
- Academic Search Index
- Journal :
- Food Research International
- Publication Type :
- Academic Journal
- Accession number :
- 179601921
- Full Text :
- https://doi.org/10.1016/j.foodres.2024.114970