Back to Search Start Over

Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky.

Authors :
Franke, Katrin
Chenchen Cai
Ponder, Kayla
Jiakun Fu
Sokoloski, Sacha
Berens, Philipp
Tolias, Andreas Savas
Source :
eLife. 9/5/2024, p1-22. 22p.
Publication Year :
2024

Abstract

Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While many studies have investigated how color information is processed in visual brain areas of primate species, we have limited understanding of how it is organized beyond the retina in other species, including most dichromatic mammals. In this study, we systematically characterized how color is represented in the primary visual cortex (V1) of mice. Using large-scale neuronal recordings and a luminance and color noise stimulus, we found that more than a third of neurons in mouse V1 are color-opponent in their receptive field center, while the receptive field surround predominantly captures luminance contrast. Furthermore, we found that color-opponency is especially pronounced in posterior V1 that encodes the sky, matching the statistics of natural scenes experienced by mice. Using unsupervised clustering, we demonstrate that the asymmetry in color representations across cortex can be explained by an uneven distribution of green-On/UV-Off color-opponent response types that are represented in the upper visual field. Finally, a simple model with natural scene-inspired parametric stimuli shows that green-On/UV-Off color-opponent response types may enhance the detection of 'predatory'-like dark UV-objects in noisy daylight scenes. The results from this study highlight the relevance of color processing in the mouse visual system and contribute to our understanding of how color information is organized in the visual hierarchy across species. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2050084X
Database :
Academic Search Index
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
179584681
Full Text :
https://doi.org/10.7554/eLife.89996