Back to Search
Start Over
On frame diagonalization of square matrices.
- Source :
-
International Journal of Computer Mathematics . Sep2024, p1-9. 9p. - Publication Year :
- 2024
-
Abstract
- In this paper, we introduce a frame diagonalization of matrices in $ M_n({\mathbb {C}}) $ Mn(C), called QR-frame diagonalization, by using QR-factorization. Furthermore, we show that every matrix <italic>A</italic> in $ M_n({\mathbb {C}}) $ Mn(C) is QR-frame diagonalizable. Also we introduce another frame diagonalization via Hadamard matrices in $ M_n({\mathbb {R}}) $ Mn(R), called Hadamard frame diagonalization, by using Hadamard matrices for <italic>n</italic> = 2, 4 or multiple of 4. We show that every matrix <italic>A</italic> in $ M_n({\mathbb {R}}) $ Mn(R) which <italic>n</italic> = 2, 4 or multiple of 4 is Hadamard frame diagonalizable. In this frame diagonalization, we can find entries on main diagonal Δ by using inner product. Moreover we introduce frame diagonalization of matrices on left quaternionic Hilbert spaces $ M_n({\mathbb {H}}) $ Mn(H). [ABSTRACT FROM AUTHOR]
- Subjects :
- *HADAMARD matrices
*HILBERT space
*MATRICES (Mathematics)
Subjects
Details
- Language :
- English
- ISSN :
- 00207160
- Database :
- Academic Search Index
- Journal :
- International Journal of Computer Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 179570699
- Full Text :
- https://doi.org/10.1080/00207160.2024.2398667