Back to Search Start Over

Detection of circulating tumor cells in blood using two‐step random forest.

Authors :
Wei, Hua
Natori, Takahiro
Tanaka, Tomohiro
Aoki, Shin
Kuriyama, Sho
Yamada, Takeshi
Aikawa, Naoyuki
Source :
Electronics & Communications in Japan. Sep2024, Vol. 107 Issue 3, p1-7. 7p.
Publication Year :
2024

Abstract

Cancer has been the leading cause of death among Japanese since 1981, and many people die from it every year worldwide. While various measures have been taken to reduce the mortality rate of cancer, circulating tumor cells (CTCs) in the blood have been attracting attention in recent years. In the past, CTCs were detected by visual inspection by a physician or by an expensive machine, but these methods required much effort by the physician and required only EpCAM‐expressing cells to be detected. In addition, detection by image processing has been used, but it has the problem that the area of interest is only a part of the area and there are many false positives. In this paper, we propose a two‐step classification method that focuses on the shape and surface of cells. In the proposed method, multiple shape and surface features are obtained for four types of cells in blood images: Clusters, CTCs, Normal Cells, and Vertical Cells. Based on the features, cells are classified using a two‐step Random Forest and their accuracy is evaluated. Furthermore, the effectiveness of the proposed method is demonstrated by comparing it with conventional methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19429533
Volume :
107
Issue :
3
Database :
Academic Search Index
Journal :
Electronics & Communications in Japan
Publication Type :
Academic Journal
Accession number :
179550284
Full Text :
https://doi.org/10.1002/ecj.12447