Back to Search
Start Over
A Pythagorean theorem for partitioned matrices.
- Source :
-
Proceedings of the American Mathematical Society . Oct2024, Vol. 152 Issue 10, p4075-4086. 12p. - Publication Year :
- 2024
-
Abstract
- We establish a Pythagorean theorem for the absolute values of the blocks of a partitioned matrix. This leads to a series of remarkable operator inequalities. For instance, if the matrix \mathbb {A} is partitioned into three blocks A,B,C, then \begin{gather*} |\mathbb {A}|^3 \ge U|A|^3U^* + V|B|^3V^*+ W|C|^3W^*,\\ \sqrt {3} |\mathbb {A}| \ge U|A|U^* + V|B|V^*+ W|C|W^*, \end{gather*} for some isometries U,V,W, and \begin{equation*} \mu _4^2(\mathbb {A}) \le \mu _3^2(A) +\mu _2^2(B) + \mu _1^2(C) \end{equation*} where \mu _j stands for the j-th singular value. Our theorem may be used to extend a result by Bhatia and Kittaneh for the Schatten p-norms and to give a singular value version of Cauchy's Interlacing Theorem. [ABSTRACT FROM AUTHOR]
- Subjects :
- *MATRIX inequalities
*ABSOLUTE value
*CALCULUS
Subjects
Details
- Language :
- English
- ISSN :
- 00029939
- Volume :
- 152
- Issue :
- 10
- Database :
- Academic Search Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 179509204
- Full Text :
- https://doi.org/10.1090/proc/15677