Back to Search Start Over

A Pythagorean theorem for partitioned matrices.

Authors :
Bourin, Jean-Christophe
Lee, Eun-Young
Source :
Proceedings of the American Mathematical Society. Oct2024, Vol. 152 Issue 10, p4075-4086. 12p.
Publication Year :
2024

Abstract

We establish a Pythagorean theorem for the absolute values of the blocks of a partitioned matrix. This leads to a series of remarkable operator inequalities. For instance, if the matrix \mathbb {A} is partitioned into three blocks A,B,C, then \begin{gather*} |\mathbb {A}|^3 \ge U|A|^3U^* + V|B|^3V^*+ W|C|^3W^*,\\ \sqrt {3} |\mathbb {A}| \ge U|A|U^* + V|B|V^*+ W|C|W^*, \end{gather*} for some isometries U,V,W, and \begin{equation*} \mu _4^2(\mathbb {A}) \le \mu _3^2(A) +\mu _2^2(B) + \mu _1^2(C) \end{equation*} where \mu _j stands for the j-th singular value. Our theorem may be used to extend a result by Bhatia and Kittaneh for the Schatten p-norms and to give a singular value version of Cauchy's Interlacing Theorem. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029939
Volume :
152
Issue :
10
Database :
Academic Search Index
Journal :
Proceedings of the American Mathematical Society
Publication Type :
Academic Journal
Accession number :
179509204
Full Text :
https://doi.org/10.1090/proc/15677