Back to Search Start Over

Mechanosensitive ion channels in glaucoma pathophysiology.

Authors :
Garcia-Sanchez, Julian
Lin, Danting
Liu, Wendy W.
Source :
Vision Research. Oct2024, Vol. 223, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve head, resulting in retinal ganglion cell death (RGC) in glaucoma. How mechanical stimuli are sensed and affect cellular physiology in the eye is unclear. Recent studies have shown that mechanosensitive ion channels are expressed in many ocular tissues relevant to glaucoma and may influence IOP regulation and RGC survival. Furthermore, variants in mechanosensitive ion channel genes may be associated with risk for primary open angle glaucoma. These findings suggest that mechanosensitive channels may be important mechanosensors mediating cellular responses to pressure signals in the eye. In this review, we focus on mechanosensitive ion channels from three major channel families—PIEZO, two-pore potassium and transient receptor potential channels. We review the key properties of these channels, their effects on cell function and physiology, and discuss their possible roles in glaucoma pathophysiology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00426989
Volume :
223
Database :
Academic Search Index
Journal :
Vision Research
Publication Type :
Academic Journal
Accession number :
179465585
Full Text :
https://doi.org/10.1016/j.visres.2024.108473