Back to Search Start Over

Noncontrast free-breathing ECG-gated 3D balanced steady-state free precession in congenital heart disease and aortopathy evaluation.

Authors :
Kocaoglu, Murat
Lang, Sean M.
Ta, Hieu
Moore, Ryan A.
Pednekar, Amol
Source :
Pediatric Radiology. Sep2024, Vol. 54 Issue 10, p1661-1673. 13p.
Publication Year :
2024

Abstract

Background: High-fidelity cardiac magnetic resonance (MR) imaging plays a pivotal role in the surveillance of congenital heart disease (CHD) and aortopathy. Objective: We aimed to evaluate the quality and accuracy of free breathing, ECG-gated noncontrast three-dimensional (3D) balanced steady-state free precession (bSSFP) in cases of CHDs and aortopathies using contrast-enhanced 3D bSSFP as a reference. We also used one of our routinely used non-ECG-gated 2D-single-shot (SSh) bSSFP sequence as an adjunct to noncontrast 3D bSSFP. Materials and methods: Institutional review board approval was obtained to perform a systematic retrospective analysis of image quality and vascular measurements. Patients with CHD and aortopathy, who were undergoing clinically indicated contrast-enhanced 3D bSSFP, were prospectively identified to also undergo additional noncontrast 3D bSSFP and 2D SSh bSSFP imaging as part of a clinical quality improvement initiative aimed at reducing the use of contrast when feasible. Two readers, blinded to each other's evaluations, graded image quality on a 5-point Likert scale and performed vascular measurements in separate sessions for both 3D bSSFP images. They also reported the visibility of various mediastinal great vessels on 2D SSh bSSFP images. Raw agreement, the weighted kappa statistic, and intra-class correlation coefficients (ICCs) were computed to assess the consistency and agreement between the two readers. Comparative analysis of noncontrast and contrast-enhanced 3D bSSFP imaging was performed in adult and pediatric patients using a two-sided paired t-test and Bland–Altman analysis. A P-value < 0.05 was considered significant for all inference testing. Results: A total of 29 patients (17 males, median age 20.3 years, interquartile range (IQR) 12.5, age range 7–39 years), including 11 pediatric patients under the age of 18 years (6 males, median age 14.5 years, IQR 4.0, age range 7–17 years), underwent retrospective analysis. The overall image quality score for contrast-enhanced 3D bSSFP was significantly higher (P < 0.0001) than that of noncontrast 3D bSSFP for both all subjects (4.4 ± 0.2, range 4.0–4.9 vs 3.7 ± 0.4, range 3.1–4.7) and only pediatric subjects (4.3 ± 0.3, range 4.0–4.9 vs 3.6 ± 0.5, range 3.1–4.4). By combining noncontrast 3D bSSFP and 2D bSSFP, reader 1 and reader 2 rated 423 and 420 vessels diagnostic, respectively, in a total of 435 vessel segments. All landmarks showed similar mean vessel diameters without significant differences between noncontrast and contrast-enhanced 3D bSSFP MR angiography (r = 0.99, bias -0.31 mm, 95% limits of agreement -2.04 mm to 1.43 mm). Conclusions: Although contrast-enhanced images had better overall image quality, an imaging protocol consisting of noncontrast 2D SSh bSSFP and 3D bSSFP whole-chest images provides diagnostically adequate image quality, and accurate vascular measurements, comparable to free-breathing contrast-enhanced 3D bSSFP in both children and adults with CHD and aortopathies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03010449
Volume :
54
Issue :
10
Database :
Academic Search Index
Journal :
Pediatric Radiology
Publication Type :
Academic Journal
Accession number :
179460602
Full Text :
https://doi.org/10.1007/s00247-024-06024-1