Back to Search Start Over

A Photoactivated Self‐Adaptive Liquid Crystal Elastomer Oscillator From Orientation and Polymerization Guided by Nanowire Assembly.

Authors :
Chen, Hong
Yao, Xin
Qin, Haili
Cong, Huai‐Ping
Yu, Shu‐Hong
Source :
Advanced Functional Materials. Sep2024, p1. 12p. 6 Illustrations.
Publication Year :
2024

Abstract

Constructing self‐adaptive oscillators that can continuously, stably, and tunably transform external stimulus into mechanical work is high demand for soft robots, energy harvesters and object conveyors. However, these systems are challenging to develop because of the single mesogenic anisotropy and simple material constituents obtained by a traditional technique. Here, a photoactivated self‐adaptive liquid crystal elastomer (LCE) oscillator with controlled nanoassembly‐directed hierarchically anisotropic structure is demonstrated by developing the highly‐aligned silver nanowire (AgNW) assemblies (HAs) to guide the orientation and polymerization of LC molecules. The fabricated HAs‐LCE film exhibits tunable multiple anisotropies on mesogenic alignment, composition, density gradient across the thickness and mechanical behaviors. Combined with excellent photo‐driven bending deformation, the HAs‐LCE cantilever performs a self‐sustained, periodic and steady oscillation self‐propelled by negative feedback loops under a continuous NIR laser. Impressively, triggered by synergetic deformations of anisotropically responsive architecture, self‐adaptive oscillations are first achieved with self‐tunable frequencies spanning from 4.1 to 13.2 Hz to accommodate variable light intensity, showing enormous and distinctive potentials for optical modulation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
179432933
Full Text :
https://doi.org/10.1002/adfm.202412728