Back to Search Start Over

Minimum Air Cooling Requirements for Different Lithium-Ion Battery Operating Statuses.

Authors :
Yabo Wang
Xiang Yin
Xueqiang Li
Hailong Li
Shengchun Liu
Xinlin Zhu
Xiaolei Ma
Source :
ASME Journal of Heat & Mass Transfer. Oct2024, Vol. 146 Issue 10, p1-8. 8p.
Publication Year :
2024

Abstract

Battery energy storage systems (BESSs) play an important role in increasing the use of renewable energy sources. Owing to the temperature sensitivity of lithium-ion batteries (LIBs), battery thermal management systems (BTMSs) are crucial to ensuring the safe and efficient operation of BESSs. Previous works mainly focused on evaluating the performance of BTMS; however, little attention has been paid to the minimum cooling requirements of BESSs, which are important for optimizing the design and operation of BTMSs. To bridge the knowledge gap, this work investigated the performance of air cooling for a battery cabin under different charge/discharge (C) rates by using a computational fluid dynamics (CFD) model, which is coupled with a battery model. Simulation results show that the inlet airflow rate has the strongest influence. For the studied cases, when the battery operates at C-rates lower than 3, the inlet temperature should be controlled below 35 °C, and the gap between the batteries should be greater than 3 mm to meet the minimum heat dissipation requirement. At a C-rate of 0.5C, natural convection is sufficient to meet the cooling need, whereas at 1C or higher C-rates, forced convection has to be used. Increasing the number of batteries, for example, from 6 to 8, has negligible impact on the inlet flow required to assure the heat dissipation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
28328450
Volume :
146
Issue :
10
Database :
Academic Search Index
Journal :
ASME Journal of Heat & Mass Transfer
Publication Type :
Academic Journal
Accession number :
179428288
Full Text :
https://doi.org/10.1115/1.4065558