Back to Search
Start Over
Attapulgite-intercalated g-C3N4/ZnIn2S4 3D hierarchical Z-scheme heterojunction for boosting photocatalytic hydrogen production.
- Source :
-
Journal of Colloid & Interface Science . Dec2024, Vol. 675, p52-63. 12p. - Publication Year :
- 2024
-
Abstract
- [Display omitted] • 3D hierarchical Z-scheme heterojunction was successfully constructed. • The sandwich-like layered structure of the ZCA composite photocatalyst offers a rich heterojunction interface. • A possible mechanism for the enhanced performance was briefly discussed by means of work function calculations. • This work provided insights into the use of natural minerals for high value-added mineral applications. Construction of hierarchical architecture with suitable band alignment for graphitic carbon nitride (g-C 3 N 4) played a pivotal role in enhancing the efficiency of photocatalysts. In this study, a novel attapulgite-intercalated g-C 3 N 4 /ZnIn 2 S 4 nanocomposite material (ZIS/CN/ATP, abbreviated as ZCA) was successfully synthesized using the freeze-drying technique, thermal polymerization, and a simple low-temperature hydrothermal method. Attapulgite (ATP) was intercalated into g-C 3 N 4 to effectively regulate its interlayer structure. The results reveal a substantial enlargement of its internal space, thereby facilitating the provision of additional active sites for improved dispersibility of ZnIn 2 S 4. Notably, the optimized photocatalyst, comprising a mass ratio of ATP, g-C 3 N 4 , and ZnIn 2 S 4 at 1:1:2.5 respectively, achieves an outstanding hydrogen evolution rate of 3906.15 μmol g−1h−1, without the need for a Pt co-catalyst. This rate surpasses that of pristine g-C 3 N 4 by a factor of 475 and ZnIn 2 S 4 by a factor of 5, representing a significant improvement in performance. This significant enhancement can be primarily attributed to the higher specific surface area, richer active sites, broadened light response range, and efficient interfacial charge transfer channels of the ZCA composite photocatalyst. Furthermore, the Z-scheme photocatalytic mechanism for the sandwich-like layered structure heterojunction was thoroughly investigated using diverse characterization techniques. This work offers new insights for enhancing photocatalytic performance through the expanded utilization of natural minerals, paving the way for future advancements in this field. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219797
- Volume :
- 675
- Database :
- Academic Search Index
- Journal :
- Journal of Colloid & Interface Science
- Publication Type :
- Academic Journal
- Accession number :
- 179396232
- Full Text :
- https://doi.org/10.1016/j.jcis.2024.06.243