Back to Search
Start Over
Controlled growth of asymmetric chiral TeOx for broad-spectrum, high-responsivity and polarization-sensitive photodetection.
- Source :
-
Journal of Chemical Physics . 8/28/2024, Vol. 161 Issue 8, p1-8. 8p. - Publication Year :
- 2024
-
Abstract
- Low-dimensional nanostructures, especially one-dimensional materials, exhibit remarkable anisotropic characteristics due to their low symmetry, making them promising candidates for polarization-sensitive photodetection. Here, we present a chemical vapor deposition synthesis method for tellurium suboxide (TeOx), confirming the practicality of photodetectors constructed from TeOx nanowires (NWs) in high-responsivity, broadband, and polarization-sensitive detection. By precisely controlling the thermodynamics and kinetics of TeOx NWs growth, we achieve large-scale growth of TeOx NWs with highly controllable dimensions and propose a method to induce intrinsic built-in strain in TeOx NWs. Photodetectors based on quasi-one-dimensional TeOx NWs with ohmic contact demonstrate broadband spectral response (638–1550 nm), high responsivity (13 700 mA·W−1), and superior air stability. Particularly, owing to the inherent structural anisotropy of the photodetectors, they exhibit polarization-sensitive photodetection, with anisotropy ratios of 1.70 and 1.71 at 638 and 808 nm, respectively. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 161
- Issue :
- 8
- Database :
- Academic Search Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 179372641
- Full Text :
- https://doi.org/10.1063/5.0222227