Back to Search Start Over

Sharp pinching theorems for complete submanifolds in the sphere.

Authors :
Magliaro, Marco
Mari, Luciano
Roing, Fernanda
Savas-Halilaj, Andreas
Source :
Journal für die Reine und Angewandte Mathematik. Sep2024, Vol. 2024 Issue 814, p117-134. 18p.
Publication Year :
2024

Abstract

For every complete and minimally immersed submanifold f : M n → S n + p whose second fundamental form satisfies | A | 2 ≤ n ⁢ p / (2 ⁢ p − 1) , we prove that it is either totally geodesic, or (a covering of) a Clifford torus or a Veronese surface in S 4 , thereby extending the well-known results by Simons, Lawson and Chern, do Carmo & Kobayashi from compact to complete M n . We also obtain the corresponding result for complete hypersurfaces with non-vanishing constant mean curvature, due to Alencar & do Carmo in the compact case, under the optimal bound on the umbilicity tensor. In dimension n ≤ 6 , a pinching theorem for complete higher-codimensional submanifolds with non-vanishing parallel mean curvature is proved, partly generalizing previous work by Santos. Our approach is inspired by the conformal method of Fischer-Colbrie, Shen & Ye and Catino, Mastrolia & Roncoroni. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00754102
Volume :
2024
Issue :
814
Database :
Academic Search Index
Journal :
Journal für die Reine und Angewandte Mathematik
Publication Type :
Academic Journal
Accession number :
179363148
Full Text :
https://doi.org/10.1515/crelle-2024-0042