Back to Search
Start Over
Sharp pinching theorems for complete submanifolds in the sphere.
- Source :
-
Journal für die Reine und Angewandte Mathematik . Sep2024, Vol. 2024 Issue 814, p117-134. 18p. - Publication Year :
- 2024
-
Abstract
- For every complete and minimally immersed submanifold f : M n → S n + p whose second fundamental form satisfies | A | 2 ≤ n p / (2 p − 1) , we prove that it is either totally geodesic, or (a covering of) a Clifford torus or a Veronese surface in S 4 , thereby extending the well-known results by Simons, Lawson and Chern, do Carmo & Kobayashi from compact to complete M n . We also obtain the corresponding result for complete hypersurfaces with non-vanishing constant mean curvature, due to Alencar & do Carmo in the compact case, under the optimal bound on the umbilicity tensor. In dimension n ≤ 6 , a pinching theorem for complete higher-codimensional submanifolds with non-vanishing parallel mean curvature is proved, partly generalizing previous work by Santos. Our approach is inspired by the conformal method of Fischer-Colbrie, Shen & Ye and Catino, Mastrolia & Roncoroni. [ABSTRACT FROM AUTHOR]
- Subjects :
- *TORUS
*GEODESICS
*CURVATURE
*SPHERES
*HYPERSURFACES
*SUBMANIFOLDS
Subjects
Details
- Language :
- English
- ISSN :
- 00754102
- Volume :
- 2024
- Issue :
- 814
- Database :
- Academic Search Index
- Journal :
- Journal für die Reine und Angewandte Mathematik
- Publication Type :
- Academic Journal
- Accession number :
- 179363148
- Full Text :
- https://doi.org/10.1515/crelle-2024-0042