Back to Search Start Over

Developing a Comprehensive Oil Spill Detection Model for Marine Environments.

Authors :
Akhmedov, Farkhod
Nasimov, Rashid
Abdusalomov, Akmalbek
Source :
Remote Sensing. Aug2024, Vol. 16 Issue 16, p3080. 22p.
Publication Year :
2024

Abstract

Detecting oil spills in marine environments is crucial for avoiding environmental damage and facilitating rapid response efforts. In this study, we propose a robust method for oil spill detection leveraging state-of-the-art (SOTA) deep learning techniques. We constructed an extensive dataset comprising images and frames extracted from video sourced from Google, significantly augmenting the dataset through frame extraction techniques. Each image is meticulously labeled to ensure high-quality training data. Utilizing the Yolov8 segmentation model, we trained our oil spill detection model to accurately identify and segment oil spills in ocean environments. K-means and Truncated Linear Stretching algorithms are combined with trained model weight to increase model detection accuracy. The model demonstrated exceptional performance, yielding high detection accuracy and precise segmentation capabilities. Our results indicate that this approach is highly effective for real-time oil spill detection, offering a promising tool for environmental monitoring and disaster management. In training metrics, the model reached over 97% accuracy in 100 epochs. In evaluation, model achieved its best detection rates by 94% accuracy in F1, 93.9% accuracy in Precision, and 95.5% mAP@0.5 accuracy in Recall curves. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
16
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
179355393
Full Text :
https://doi.org/10.3390/rs16163080