Back to Search Start Over

Impact of Electric Vehicles Consumption on Energy Efficient and Self-Sufficient Performance in Building: A Case Study in the Brazilian Amazon Region.

Authors :
Souza, Ana Carolina Dias Barreto de
Vasconcelos, Filipe Menezes de
Moreira, Gabriel Abel Massunanga
Alves, João Victor dos Reis.
Tabora, Jonathan Muñoz
Tostes, Maria Emília de Lima
Carvalho, Carminda Célia Moura de Moura
Nascimento, Andreia Antloga do
Source :
Energies (19961073). Aug2024, Vol. 17 Issue 16, p4060. 32p.
Publication Year :
2024

Abstract

The growth of electric vehicles (EVs) and their integration into existing and future buildings bring new considerations for energy efficiency (EE) and balance when combined with renewable energy. However, for buildings with an energy efficiency label, such as Near Zero Energy Building (NZEB) or Positive Energy Building (PEB), the introduction of EVs may result in the declassification of the EE label due to the additional energy required for the charging infrastructure. This underscores the increasing relevance of demand-side management techniques to effectively manage and utilize energy consumption and generation in buildings. This paper evaluates the influence of electric vehicle (EV) charging on NZEB/PEB-labeled buildings of the Brazilian Building Labeling Program (PBE Edifica). Utilizing on-site surveys, computational modeling, and thermos-energetic analysis with software tools such as OpenStudio v. 1.1.0 and EnergyPlus v. 9.4.0, an energy classification was conducted in a building in the city of Belem, State of Para, Brazil. Subsequently, power flow simulations employing probabilistic models and Monte Carlo approaches were executed in the OpenDSS software v. 10.0.0.2 to examine the impact of EV integration, both with and without the implementation of demand-side management techniques. Analyses using the labeling methodology demonstrated that the building has EE level C and NZEB self-sufficiency classification. The assessment of the impact of EV integration on the building's total energy consumption in the base (current) scenario was carried out in two scenarios, with (2) and without (1) supply management. Scenario 01 generated a 69.28% increase in energy consumption, reducing the EE level to D and resulting in the loss of the NZEB class. Scenario 02 resulted in a smaller increase in energy consumption of 40.50%, and guaranteed the return of the NZEB class lost in scenario 1, but it was not enough to return the EE level to class C. The results highlight the need for immediate and comprehensive energy management strategies, as the findings show that the two scenarios present a difference of 41.55% in energy consumption. Nonetheless, these strategies are not enough if other consumption restrictions or energy efficiency measures are not applied to other building systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
16
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
179355042
Full Text :
https://doi.org/10.3390/en17164060