Back to Search Start Over

The Effects of Gynecological Tumor Irradiation on the Immune System.

Authors :
Romero Fernandez, Jesus
Cordoba Largo, Sofia
Benlloch Rodriguez, Raquel
Gil Haro, Beatriz
Source :
Cancers. Aug2024, Vol. 16 Issue 16, p2804. 14p.
Publication Year :
2024

Abstract

Simple Summary: Radiobiology has evolved from a mechanistic model based on DNA damage, and other response factors, into a more complex model including effects on the immune system and the tumor microenvironment (TME). Irradiation has an immunomodulatory effect that can manifest as increased anti-tumor immunity or immunosuppression. Irradiation promotes anti-tumor immunity through pro-inflammatory cytokines and endothelial damage, the recruitment of immune cells, and radiation-induced immunogenic cell death (ICD), characterized by the release of damage-associated molecular patterns (DAMPs) and tumor antigens. Irradiation activates both the innate and adaptive arms of the immune system. Irradiation also produces immunosuppression via the recruitment and activation of immune cells, with immunosuppressive effects. In this work, we discuss the mechanism involved in radiation-induced immune effects on which the combination of radiotherapy and immunotherapy for gynecological cancers is based. Radiobiology has evolved from a mechanistic model based on DNA damage and response factors into a more complex model that includes effects on the immune system and the tumor microenvironment (TME). Irradiation has an immunomodulatory effect that can manifest as increased anti-tumor immunity or immunosuppression. Irradiation promotes an inflammatory microenvironment through the release of pro-inflammatory cytokines and endothelial damage, which recruit immune system cells to the irradiated area. Radiation-induced immunogenic cell death (ICD), characterized by the release of damage-associated molecular patterns (DAMPs) and tumor antigens, triggers an anti-tumor immune response of both innate and adaptive immunity. Anti-tumor immunity can manifest at a distance from the irradiated area, a phenomenon known as the abscopal effect (AE), which involves dendritic cells and CD8+ T cells. Irradiation also produces an immunosuppressive effect mediated by tumor-associated macrophages (TAMs) and regulatory T lymphocytes (Tregs), which counterbalances the immunostimulatory effect. In this work, we review the mechanisms involved in the radiation-induced immune response, which support the combined treatment of RT and immunotherapy, focusing, where possible, on gynecologic cancer. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20726694
Volume :
16
Issue :
16
Database :
Academic Search Index
Journal :
Cancers
Publication Type :
Academic Journal
Accession number :
179353771
Full Text :
https://doi.org/10.3390/cancers16162804