Back to Search Start Over

Numerical Simulation and Experimental Study of Carbon Fiber-Reinforced Polymer Single-Bar Extrusion Anchorage Structure.

Authors :
Zhu, Wanxu
Xiong, Chengyang
Cheng, Boxuan
Shen, Quanxi
Cheng, Hongbin
Guo, Shangqi
Source :
Materials (1996-1944). Aug2024, Vol. 17 Issue 16, p3915. 17p.
Publication Year :
2024

Abstract

The reliable anchorage of carbon fiber-reinforced polymer (CFRP) tendons is a critical issue influencing the stable bearing capacity of bridge cables. This study introduces a novel CFRP single-strand extrusion anchoring structure, where the strand is compressed at its end. By integrating this with internal cone filler wrapping, we create a CFRP multi-strand cable composite anchoring system. This innovative design not only minimizes the overall dimensions of the anchoring system but also significantly improves its anchoring efficiency coefficient. An axisymmetric model was developed using ANSYS finite element software. The radial stress distribution and anchorage efficiency coefficient in the anchorage zone of Φ7 CFRP bar and Φ13.6 extrusion die were analyzed with varying parameters, such as chamfering, outer diameter, and length of the extrusion sleeve, and were validated through static load anchorage tests. The results indicate that the highest anchoring efficiency is achieved when four extrusion sleeves with a chamfer angle of 5°, an outer diameter of Φ14.4, and a length of 15 mm are connected in series, reaching a coefficient of 61.04%. Furthermore, this study proposes an anchorage structure where multiple extrusion sleeves are connected in series and sequentially compressed to overcome the limitations of increasing anchorage length for enhancing the anchorage coefficient. The test results demonstrate that with equal total anchorage length, connecting four 15 mm extrusion sleeves in series enhances the anchorage efficiency coefficient by 24.98% compared to a single 60 mm extrusion sleeve structure. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
16
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
179350439
Full Text :
https://doi.org/10.3390/ma17163915