Back to Search
Start Over
Creating Meiotic Recombination-Regulating DNA Sites by SpEDIT in Fission Yeast Reveals Inefficiencies, Target-Site Duplications, and Ectopic Insertions.
- Source :
-
Biomolecules (2218-273X) . Aug2024, Vol. 14 Issue 8, p1016. 14p. - Publication Year :
- 2024
-
Abstract
- Recombination hotspot-activating DNA sites (e.g., M26, CCAAT, Oligo-C) and their binding proteins (e.g., Atf1-Pcr1 heterodimer; Php2-Php3-Php5 complex, Rst2, Prdm9) regulate the distribution of Spo11 (Rec12)-initiated meiotic recombination. We sought to create 14 different candidate regulatory DNA sites via bp substitutions in the ade6 gene of Schizosaccharomyces pombe. We used a fission yeast-optimized CRISPR-Cas9 system (SpEDIT) and 196 bp-long dsDNA templates with centrally located bp substitutions designed to ablate the genomic PAM site, create specific 15 bp-long DNA sequences, and introduce a stop codon. After co-transformation with a plasmid that encoded both the guide RNA and Cas9 enzyme, about one-third of colonies had a phenotype diagnostic for DNA sequence changes at ade6. PCR diagnostics and DNA sequencing revealed a diverse collection of alterations at the target locus, including: (A) complete or (B) partial template-directed substitutions; (C) non-homologous end joinings; (D) duplications; (E) bp mutations, and (F) insertions of ectopic DNA. We concluded that SpEDIT can be used successfully to generate a diverse collection of DNA sequence elements within a reporter gene of interest. However, its utility is complicated by low efficiency, incomplete template-directed repair events, and undesired alterations to the target locus. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 2218273X
- Volume :
- 14
- Issue :
- 8
- Database :
- Academic Search Index
- Journal :
- Biomolecules (2218-273X)
- Publication Type :
- Academic Journal
- Accession number :
- 179350379
- Full Text :
- https://doi.org/10.3390/biom14081016