Back to Search
Start Over
Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD).
- Source :
-
Sensors (14248220) . Aug2024, Vol. 24 Issue 16, p5201. 15p. - Publication Year :
- 2024
-
Abstract
- In recent research, there has been a significant focus on establishing robust quantum cryptography using the continuous-variable quantum key distribution (CV-QKD) protocol based on Gaussian modulation of coherent states (GMCS). Unlike more stable fiber channels, one challenge faced in free-space quantum channels is the complex transmittance characterized by varying atmospheric turbulence. This complexity poses difficulties in achieving high transmission rates and long-distance communication. In this article, we thoroughly evaluate the performance of the CV-QKD/GMCS system under the effect of individual attacks, considering homodyne detection with both direct and reverse reconciliation techniques. To address the issue of limited detector efficiency, we incorporate the phase-sensitive amplifier (PSA) as a compensating measure. The results show that the CV-QKD/GMCS system with PSA achieves a longer secure distance and a higher key rate compared to the system without PSA, considering both direct and reverse reconciliation algorithms. With an amplifier gain of 10, the reverse reconciliation algorithm achieves a secure distance of 5 km with a secret key rate of 10 − 1 bits/pulse. On the other hand, direct reconciliation reaches a secure distance of 2.82 km. [ABSTRACT FROM AUTHOR]
- Subjects :
- *HOMODYNE detection
*COHERENT states
*QUANTUM cryptography
*DETECTORS
*ALGORITHMS
Subjects
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 24
- Issue :
- 16
- Database :
- Academic Search Index
- Journal :
- Sensors (14248220)
- Publication Type :
- Academic Journal
- Accession number :
- 179349774
- Full Text :
- https://doi.org/10.3390/s24165201