Back to Search Start Over

Edge Computing and Fault Diagnosis of Rotating Machinery Based on MobileNet in Wireless Sensor Networks for Mechanical Vibration.

Authors :
Huang, Yi
Liang, Shuang
Cui, Tingqiong
Mu, Xiaojing
Luo, Tianhong
Wang, Shengxue
Wu, Guangyong
Source :
Sensors (14248220). Aug2024, Vol. 24 Issue 16, p5156. 14p.
Publication Year :
2024

Abstract

With the rapid development of the Industrial Internet of Things in rotating machinery, the amount of data sampled by mechanical vibration wireless sensor networks (MvWSNs) has increased significantly, straining bandwidth capacity. Concurrently, the safety requirements for rotating machinery have escalated, necessitating enhanced real-time data processing capabilities. Conventional methods, reliant on experiential approaches, have proven inefficient in meeting these evolving challenges. To this end, a fault detection method for rotating machinery based on mobileNet in MvWSNs is proposed to address these intractable issues. The small and light deep learning model is helpful to realize nearly real-time sensing and fault detection, lightening the communication pressure of MvWSNs. The well-trained deep learning is implanted on the MvWSNs sensor node, an edge computing platform developed via embedded STM32 microcontrollers (STMicroelectronics International NV, Geneva, Switzerland). Data acquisition, data processing, and data classification are all executed on the computing- and energy-constrained sensor node. The experimental results demonstrate that the proposed fault detection method can achieve about 0.99 for the DDS dataset and an accuracy of 0.98 in the MvWSNs sensor node. Furthermore, the final transmission data size is only 0.1% compared to the original data size. It is also a time-saving method that can be accomplished within 135 ms while the raw data will take about 1000 ms to transmit to the monitoring center when there are four sensor nodes in the network. Thus, the proposed edge computing method shows good application prospects in fault detection and control of rotating machinery with high time sensitivity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
16
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
179349729
Full Text :
https://doi.org/10.3390/s24165156