Back to Search
Start Over
BioTrojans: viscoelastic microvalve-based attacks in flow-based microfluidic biochips and their countermeasures.
- Source :
-
Scientific Reports . 8/27/2024, Vol. 14 Issue 1, p1-13. 13p. - Publication Year :
- 2024
-
Abstract
- Flow-based microfluidic biochips (FMBs) are widely used in biomedical research and diagnostics. However, their security against potential material-level cyber-physical attacks remains inadequately explored, posing a significant future challenge. One of the main components, polydimethylsiloxane (PDMS) microvalves, is pivotal to FMBs' functionality. However, their fabrication, which involves thermal curing, makes them susceptible to chemical tampering-induced material degradation attacks. Here, we demonstrate one such material-based attack termed “BioTrojans,” which are chemically tampered and optically stealthy microvalves that can be ruptured through low-frequency actuations. To chemically tamper with the microvalves, we altered the associated PDMS curing ratio. Attack demonstrations showed that BioTrojan valves with 30:1 and 50:1 curing ratios ruptured quickly under 2 Hz frequency actuations, while authentic microvalves with a 10:1 ratio remained intact even after being actuated at the same frequency for 2 days (345,600 cycles). Dynamic mechanical analyzer (DMA) results and associated finite element analysis revealed that a BioTrojan valve stores three orders of magnitude more mechanical energy than the authentic one, making it highly susceptible to low-frequency-induced ruptures. To counter BioTrojan attacks, we propose a security-by-design approach using smooth peripheral fillets to reduce stress concentration by over 50% and a spectral authentication method using fluorescent microvalves capable of effectively detecting BioTrojans. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- 179314127
- Full Text :
- https://doi.org/10.1038/s41598-024-70703-0