Back to Search Start Over

Formate‐tetrahydrofolate ligase: supplying the cytosolic one‐carbon network in roots with one‐carbon units originating from glycolate.

Authors :
Saeheng, Sompop
Bailes, Clayton
Bao, Han
Gashu, Kelem
Morency, Matt
Arlynn, Tana
Smertenko, Andrei
Walker, Berkley James
Roje, Sanja
Source :
Plant Journal. Sep2024, Vol. 119 Issue 5, p2464-2483. 20p.
Publication Year :
2024

Abstract

SUMMARY: The metabolism of tetrahydrofolate (H4PteGlun)‐bound one‐carbon (C1) units (C1 metabolism) is multifaceted and required for plant growth, but it is unclear what of many possible synthesis pathways provide C1 units in specific organelles and tissues. One possible source of C1 units is via formate‐tetrahydrofolate ligase, which catalyzes the reversible ATP‐driven production of 10‐formyltetrahydrofolate (10‐formyl‐H4PteGlun) from formate and tetrahydrofolate (H4PteGlun). Here, we report biochemical and functional characterization of the enzyme from Arabidopsis thaliana (AtFTHFL). We show that the recombinant AtFTHFL has lower Km and kcat values with pentaglutamyl tetrahydrofolate (H4PteGlu5) as compared to monoglutamyl tetrahydrofolate (H4PteGlu1), resulting in virtually identical catalytic efficiencies for the two substrates. Stable transformation of Arabidopsis plants with the EGFP‐tagged AtFTHFL, followed with fluorescence microscopy, demonstrated cytosolic signal. Two independent T‐DNA insertion lines with impaired AtFTHFL function had shorter roots compared to the wild type plants, demonstrating the importance of this enzyme for root growth. Overexpressing AtFTHFL led to the accumulation of H4PteGlun + 5,10‐methylene‐H4PteGlun and serine, accompanied with the depletion of formate and glycolate, in roots of the transgenic Arabidopsis plants. This metabolic adjustment supports the hypothesis that AtFTHFL feeds the cytosolic C1 network in roots with C1 units originating from glycolate, and that these units are then used mainly for biosynthesis of serine, and not as much for the biosynthesis of 5‐methyl‐H4PteGlun, methionine, and S‐adenosylmethionine. This finding has implications for any future attempts to engineer one‐carbon unit‐requiring products through manipulation of the one‐carbon metabolic network in non‐photosynthetic organs. Significance Statement: This study describes the cloning and biochemical characterization of a recombinant formate‐tetrahydrofolate ligase from plants and establishes the role of this enzyme in providing formate as an important source of one‐carbon units in roots. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09607412
Volume :
119
Issue :
5
Database :
Academic Search Index
Journal :
Plant Journal
Publication Type :
Academic Journal
Accession number :
179279317
Full Text :
https://doi.org/10.1111/tpj.16933