Back to Search
Start Over
Global Stability in a Two-species Attraction–Repulsion System with Competitive and Nonlocal Kinetics.
- Source :
-
Journal of Dynamics & Differential Equations . Sep2024, Vol. 36 Issue 3, p2555-2592. 38p. - Publication Year :
- 2024
-
Abstract
- This paper deals with a two-species attraction–repulsion chemotaxis system u t = Δ u - ξ 1 ∇ · (u ∇ v) + χ 1 ∇ · (u ∇ z) + f 1 (u , w) , (x , t) ∈ Ω × (0 , ∞) , τ v t = Δ v + w - v , (x , t) ∈ Ω × (0 , ∞) , w t = Δ w - ξ 2 ∇ · (w ∇ z) + χ 2 ∇ · (w ∇ v) + f 2 (u , w) , (x , t) ∈ Ω × (0 , ∞) , τ z t = Δ z + u - z , (x , t) ∈ Ω × (0 , ∞) , under homogeneous Neumann boundary conditions in a smoothly bounded domain Ω ⊆ R n , where τ ∈ { 0 , 1 } , ξ i , χ i > 0 and f i (u , w) (i = 1 , 2) satisfy f 1 (u , w) = u (a 0 - a 1 u - a 2 w + a 3 ∫ Ω u d x + a 4 ∫ Ω w d x) , f 2 (u , w) = w (b 0 - b 1 u - b 2 w + b 3 ∫ Ω u d x + b 4 ∫ Ω w d x) with a i , b i > 0 (i = 0 , 1 , 2) , a j , b j ∈ R (j = 3 , 4) . It is proved that in any space dimension n ≥ 1 , the above system possesses a unique global and uniformly bounded classical solution regardless of τ = 0 or τ = 1 under some suitable assumptions. Moreover, by constructing Lyapunov functionals, we establish the globally asymptotic stabilization of coexistence and semi-coexistence steady states. [ABSTRACT FROM AUTHOR]
- Subjects :
- *NEUMANN boundary conditions
*FUNCTIONALS
*CHEMOTAXIS
Subjects
Details
- Language :
- English
- ISSN :
- 10407294
- Volume :
- 36
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Journal of Dynamics & Differential Equations
- Publication Type :
- Academic Journal
- Accession number :
- 179277826
- Full Text :
- https://doi.org/10.1007/s10884-022-10215-5