Back to Search
Start Over
Structural insights into Furin enzyme inhibition to block SARS-CoV-2 spike protein cleavage: an in-silico approach.
- Source :
-
3 Biotech . 8/25/2024, Vol. 14 Issue 9, p1-12. 12p. - Publication Year :
- 2024
-
Abstract
- This study investigates the binding affinity and interactions of the Furin enzyme with two inhibitors, Naphthofluorescein and decanoyl-RVKR-chloromethylketone (CMK), using molecular docking and molecular dynamics (MD) simulations. Molecular docking results showed binding affinities of − 9.18 kcal/mol for CMK and − 5.39 kcal/mol for Naphthofluorescein. To further understand the stability and conformational changes of these complexes, MD simulations were performed. Despite CMK's favorable docking score, MD simulations revealed that its binding interactions at the Furin-active site were unstable, with significant changes observed during the simulation. In contrast, Naphthofluorescein maintained strong and stable interactions throughout the MD simulation, as confirmed by RMSD and RMSF analyses. The binding-free-energy analysis also supported the stability of Naphthofluorescein. These findings indicate that Naphthofluorescein exhibits greater stability and binding affinity as a Furin inhibitor compared to CMK. The results of this in-silico study suggest that Naphthofluorescein, along with CMK, holds the potential for repurposing as a treatment for COVID-19, subject to further validation through clinical studies. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 2190572X
- Volume :
- 14
- Issue :
- 9
- Database :
- Academic Search Index
- Journal :
- 3 Biotech
- Publication Type :
- Academic Journal
- Accession number :
- 179257851
- Full Text :
- https://doi.org/10.1007/s13205-024-04054-y