Back to Search Start Over

Spent coffee waste-derived biochar improves physical properties, water retention, and maize (Zea mays L.) growth in sandy soil.

Authors :
Alghamdi, Abdulaziz G.
Alomran, Abdulrasoul
Ibrahim, Hesham M.
Alkhasha, Arafat
Majrashi, Mosaed A.
Source :
Scientific Reports. 8/26/2024, Vol. 14 Issue 1, p1-13. 13p.
Publication Year :
2024

Abstract

Adding organic soil amendments can improve the physical and hydrological properties of soil, subsequently enhancing fertility for better crop production. In this study, spent Arabica and Columbian coffee wastes and their respective biochars were evaluated as soil amendments to improve the physical and hydrological properties of loamy sand soil and enhance maize (Zea mays L.) crop growth. Spent Arabica coffee (AC) and Columbian coffee (CC) wastes were collected and transformed into biochar through pyrolysis process at 550 °C with a residence time of 3 h and pyrolysis rate of 5 °C per minute. The AC and CC derived biochar were termed as ABC and CBC, respectively. The produced soil amendments were applied to soil at 0% (control), 1%, 3%, and 5% in a column setup. The moisture characteristics, including water infiltration, evaporation, and water retention, were investigated. Thereafter, the prepared amendments were applied to loamy sand soils at 0% (control), 1%, 3%, and 5% (w/w) application rates. Maize growth was then observed for a period of 30 days under greenhouse conditions. Results of the column trials showed that ABC and CBC applied at 5% reduced the cumulative water evaporation by 57%–66% and cumulative infiltration by 124%–181% compared to control. Likewise, 5% application of ABC and CBC resulted in 101 to 130% higher water retention in loamy sand soil. Results of the greenhouse experiment showed that 5% application of ABC and CBC amendments resulted in root biomass of 2.12 and 2.38 g, respectively, as compared to 0.51 g in control treatment. Similar treatments resulted in shoot biomass of 9.70 and 9.93 g respectively, as compared to 7.37 g in control. Likewise, 5% application of CBC and ABC increase plant height from 15.71 to 30.94 cm in ABC and 33.23 cm in CBC. Overall, 5% application of coffee waste-derived biochars significantly reduced water evaporation and infiltration, while increasing soil water retention and maize plant height, root biomass, and shoot biomass. Therefore, spent coffee waste-derived biochar could effectively be employed to improve physical and hydrological properties of loamy sand soils for better crop productivity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
179257499
Full Text :
https://doi.org/10.1038/s41598-024-70504-5