Back to Search
Start Over
Hopf bifurcation analysis of a two‐delayed diffusive predator–prey model with spatial memory of prey.
- Source :
-
Mathematical Methods in the Applied Sciences . Aug2024, p1. 26p. 9 Illustrations. - Publication Year :
- 2024
-
Abstract
- In this paper, we consider a diffusive predator–prey model with spatial memory of prey and gestation delay of predator. For the system without delays, we study the stability of the positive equilibrium in the case of diffusion and no diffusion, respectively. For the delayed model without diffusions, the existence of Hopf bifurcation is discussed. Further, we investigate the stability switches of the model with delays and diffusions when two delays change simultaneously by calculating the stability switching curves and obtain the existence of Hopf bifurcation. We also calculate the normal form of Hopf bifurcation to determine the direction of Hopf bifurcation and the stability of bifurcation periodic solutions. Finally, numerical simulations verify the theoretical results. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 01704214
- Database :
- Academic Search Index
- Journal :
- Mathematical Methods in the Applied Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 179220112
- Full Text :
- https://doi.org/10.1002/mma.10416