Back to Search Start Over

Hopf bifurcation analysis of a two‐delayed diffusive predator–prey model with spatial memory of prey.

Authors :
Wang, Hongyan
Dai, Yunxian
Zhou, Shumin
Source :
Mathematical Methods in the Applied Sciences. Aug2024, p1. 26p. 9 Illustrations.
Publication Year :
2024

Abstract

In this paper, we consider a diffusive predator–prey model with spatial memory of prey and gestation delay of predator. For the system without delays, we study the stability of the positive equilibrium in the case of diffusion and no diffusion, respectively. For the delayed model without diffusions, the existence of Hopf bifurcation is discussed. Further, we investigate the stability switches of the model with delays and diffusions when two delays change simultaneously by calculating the stability switching curves and obtain the existence of Hopf bifurcation. We also calculate the normal form of Hopf bifurcation to determine the direction of Hopf bifurcation and the stability of bifurcation periodic solutions. Finally, numerical simulations verify the theoretical results. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01704214
Database :
Academic Search Index
Journal :
Mathematical Methods in the Applied Sciences
Publication Type :
Academic Journal
Accession number :
179220112
Full Text :
https://doi.org/10.1002/mma.10416