Back to Search Start Over

Cost‐Effective Layered Oxide – Olivine Blend Cathodes for High‐Rate Pulse Power Lithium‐Ion Batteries.

Authors :
Lee, Steven
Scanlan, Kevin
Reed, Seth
Manthiram, Arumugam
Source :
Advanced Energy Materials. Aug2024, p1. 14p. 6 Illustrations.
Publication Year :
2024

Abstract

Sustainability and supply‐chain concerns require lithium‐ion batteries (LIBs) free from critical minerals, such as nickel and cobalt. While recent advances provide encouraging signs that cobalt can be removed, the question remains how much Ni can be removed from Co‐free layered oxide cathodes before sacrificing critical performance metrics. This study highlights the effect of reducing Ni by benchmarking several Co‐free cathodes with decreasing Ni content. Keeping the energy density the same by increasing the charge voltage, cathodes below 80% Ni content exhibit worsened capacity fade due to increasing oxygen release and electrolyte decomposition. Charge transfer and diffusion kinetics are also hindered with increasing Mn content and exacerbated by resistive surface phases formed at high voltages, rendering lower‐Ni, Co‐free cathodes less competitive than high‐Ni cathodes for high energy and power applications. It is demonstrated blending layered oxide with olivine as an effective alternative to deliver energy density and cycling stability comparable to lower‐Ni cathodes with moderate charging voltages. Blending with 30 wt% olivine LiMn0.5Fe0.5PO4 (LMFP) virtually eliminates the diffusion limitation of layered oxides at low state‐of‐charge, with enhanced pulse power characteristics rivaling the high‐Ni counterparts. Cathode blending can further reduce the overall Ni content and cost without the performance limitations of lower‐Ni, Co‐free cathodes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Database :
Academic Search Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
179220033
Full Text :
https://doi.org/10.1002/aenm.202403002