Back to Search Start Over

Strengthening d‐p Orbital‐Hybridization via Coordination Number Regulation of Manganese Single‐Atom Catalysts Toward Fast Kinetic and Long‐Life Sodium–Sulfur Batteries.

Authors :
Li, Zhiqiang
Chen, Xing
Yao, Ge
Wei, Lingzhi
Chen, Qianwang
Luo, Qiquan
Zheng, Fangcai
Wang, Hui
Source :
Advanced Functional Materials. Aug2024, Vol. 34 Issue 34, p1-11. 11p.
Publication Year :
2024

Abstract

The practical application of room‐temperature sodium‐sulfur (RT Na–S) batteries is blocked by the notorious shuttle effect of sodium polysulfides (NaPSs) and sluggish refox reaction kinetics. Single‐atom catalysts (SACs) have been widely studied for boosting the energy storage performance of RT Na‐S batteries. Nevertheless, the catalytic centers of SACs reported so far have focused mainly on symmetrical metal–N4 structures, which offer weak bonding affinity toward polar NaPSs, leading to detrimental shuttle effect and sluggish sulfur conversion kinetics. Herein, a novel asymmetrical Mn–N2 structure is implanted into nitrogen‐doped carbon nanofibers (Mn‐N2/CNs) through thermal NH3 etching of a symmetrical Mn–N2O2 structure. The Mn–N2 structure promotes the bonding affinity and catalytic conversion of NaPSs due to the strengthened d‐p orbital‐hybridization between the d orbital of Mn in the Mn–N2 structure and the p orbital of S in NaPSs. Consequently, Mn‐N2/CNs@S achieves a high capacity of 458 mAh g−1 at 3.0 C with a capacity decay of 0.23% over 2300 cycles. This work offers a promising pathway for regulating the coordination number of SACs with strengthened d‐p orbital‐hybridization for high‐performance RT Na–S batteries. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
34
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
179169213
Full Text :
https://doi.org/10.1002/adfm.202400859