Back to Search Start Over

In Situ Cyclized Polyacrylonitrile Coating: Key to Stabilizing Porous High‐Entropy Oxide Anodes for High‐Performance Lithium‐Ion Batteries.

Authors :
Hong, Chang
Tao, Runming
Tan, Susheng
Pressley, Lucas A.
Bridges, Craig A.
Li, Hui‐Ying
Liu, Xiaolang
Li, Haifeng
Li, Jianlin
Yuan, Huiyu
Sun, Xiao‐Guang
Liang, Jiyuan
Source :
Advanced Functional Materials. Aug2024, p1. 16p. 9 Illustrations.
Publication Year :
2024

Abstract

High‐entropy oxides (HEOs) composed of multiple metal elements have attracted great attention as anode materials for lithium‐ion batteries (LIBs) due to the synergistic effects of various metal species. However, the practical applications of HEOs are still plagued by poor conductivity, unstable solid electrolyte interphase (SEI) and poor cycling stability. Herein, nanosized (FeCoNiCrMn)3O4 HEO (NHEO) is prepared successfully by the NaCl‐assisted mechanical ball‐milling strategy. Novelly, polyacrylonitrile (PAN) is used as the binder and then in situ thermochemically cyclized to construct a cyclized PAN (cPAN) outer layer onto NHEO (NHEO‐cPAN). The in situ formed cPAN coating not only improves the electrical conductivity, but also reinforces the structural and interfacial stability, and thereby, the resulted NHEO‐cPAN electrode exhibits significantly enhanced rate and cyclic performance. Specifically, NHEO‐PAN500 electrode delivers a high reversible capacity of 560 mAh g−1 at 5 A g−1 and a high‐capacity retention of 83% over 800 cycles at 3 A g−1. Furthermore, the structural evolution and electrochemical behavior of NHEO‐PAN electrode during discharge/charge is systematically investigated by operando X‐ray diffraction, in situ impedance spectroscopy and ex situ high‐resolution transmission electron microscopy. Therefore, this work provides new insights into the engineering of electrode and interphase for high‐performance HEO electrode materials, potentially enlightening the practical applications of HEO‐based LIBs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
179156416
Full Text :
https://doi.org/10.1002/adfm.202412177