Back to Search
Start Over
High energy storage performance of KNN-based relaxor ferroelectrics in multiphase-coexisted superparaelectric state.
- Source :
-
Journal of Applied Physics . 8/21/2024, Vol. 136 Issue 7, p1-10. 10p. - Publication Year :
- 2024
-
Abstract
- Although K0.5Na0.5NbO3 (KNN) possesses large maximum polarization and relatively high breakdown strength, the large remnant polarization constrains their practical applications as energy storage materials. In this work, through multi-element doping, (K0.5−0.5xNa0.5−0.5xBix)(Nb1−xSn0.2xZn0.6xTa0.2x)O3 relaxor ferroelectrics were prepared. As the superparaelectric states (SPE) were adjusted to room temperature, orthorhombic, tetragonal, and cubic phases coexisted, accompanied by the highly dynamic polar nanoregions (PNRs). In particular, a high recoverable energy storage density of 4.5 J/cm3 and an energy storage efficiency of 83% were achieved for the x = 0.125 ceramic, with the variations less than 11% and 4%, respectively, in the wide temperature range of 20–180 °C. These results demonstrate that the multiphase PNRs in the SPE state is an effective strategy for improving the energy storage performance of KNN-based ceramics. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00218979
- Volume :
- 136
- Issue :
- 7
- Database :
- Academic Search Index
- Journal :
- Journal of Applied Physics
- Publication Type :
- Academic Journal
- Accession number :
- 179145337
- Full Text :
- https://doi.org/10.1063/5.0220887