Back to Search Start Over

Investigation of gas residuals in sandstone formations via X-ray core-flooding experiments: Implication for subsurface hydrogen storage.

Authors :
Al-Yaseri, Ahmed
Fatah, Ahmed
Al-Abdrabalnabi, Ridha
Alafnan, Saad
Salmachi, Alireza
Source :
International Journal of Hydrogen Energy. Aug2024, Vol. 78, p268-278. 11p.
Publication Year :
2024

Abstract

The production and utilization of hydrogen (H 2) as a clean energy source offer a promising solution towards achieving net-zero carbon emissions. Utilizing sandstone formations for geological hydrogen storage presents a viable option for the practical implementation of the hydrogen economy, offering both safe and large-scale containment capabilities. Accurate assessment of gas displacement behavior in porous media plays a critical role in understanding gas saturation, gas residual, and long-term storage duration. However, there are limited studies available on dynamic displacements for hydrogen storage applications. This study aims to enhance the understanding of gas flow behavior in sandstone rocks for different gas types and determine the role of capillary pressure and gas wettability during hydrogen storage. A series of gas core-flooding experiments are performed on a brine-saturated sandstone core sample using three different gases (CO 2 , CH 4, and H 2). X-ray scanning technique is applied to detect the gas saturation and gas residual after the core-flooding experiments. The results indicate that the average gas saturation ranges between 25 and 40%, with zero gas residual for all gases, suggesting that the gas residuals in this clean sandstone sample are unaffected by the gas type. Initially, the capillary pressure profile for the sample displayed low brine saturation at 200 psi, indicating very low capillary pressure in the sample due to the high permeability and large pore radius, despite the strong water-wetting behavior of the sample. Moreover, the obtained results indicate the high potential for gas recovery (especially for hydrogen during withdrawal cycles), and the high displacement efficiency in sandstone rocks. The reported low gas residual suggests that the wettability of the rock is not affected by gas injection, and it appears that the wettability and capillary pressure are not the controlling factors for gas storage in this sandstone sample. This observation suggests that the structural trapping mechanism is most likely to be the dominant trapping mechanism in this shallow high permeable sandstone rock. Also, the injection of cushion gases such as CO 2 and CH 4 indicated similar results to hydrogen injection, due to the low capillary pressure and high permeability in this sandstone sample. The findings of this study can greatly enhance the understanding of gas injection, displacement behavior, and gas residuals in sandstone rocks related to underground hydrogen storage. • The behavior of gas injection and dynamic displacements in sandstone reservoirs are investigated vis X-ray core-flooding. • CO 2 displayed an average gas saturation of 40%, while the average gas saturation for H 2 and CH 4 ranged between 25 and 30%. • The residual gas saturations in the sample were almost zero for all gases. • The rock wettability was not affected by gas injection. • Structural trapping mechanism appears to be the dominant trapping mechanism for shallow high-permeable sandstone rocks. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03603199
Volume :
78
Database :
Academic Search Index
Journal :
International Journal of Hydrogen Energy
Publication Type :
Academic Journal
Accession number :
179139482
Full Text :
https://doi.org/10.1016/j.ijhydene.2024.06.244