Back to Search Start Over

Well‐conditioned Galerkin spectral method for two‐sided fractional diffusion equation with drift and fractional Laplacian.

Authors :
Zhao, Lijing
Wang, Xudong
Source :
Mathematical Methods in the Applied Sciences. 9/15/2024, Vol. 47 Issue 13, p11181-11200. 20p.
Publication Year :
2024

Abstract

In this paper, we focus on designing a well‐conditioned Galerkin spectral methods for solving a two‐sided fractional diffusion equations with drift in which the fractional operators are defined neither in Riemann–Liouville nor Caputo sense, and its physical meaning is clear. Based on the image spaces of Riemann–Liouville fractional integral operators on Lp([a, b]) space discussed in our previous work, after a step by step deduction, three kinds of Galerkin spectral formulations are proposed, the final obtained corresponding scheme of which shows to be well‐conditioned—the condition number of the stiff matrix can be reduced from O(N2α) to O(Nα), where N is the degree of the polynomials used in the approximation. Another point is that the obtained schemes can also be applied successfully to approximate fractional Laplacian with generalized homogeneous boundary conditions, whose fractional order α ∈ (0, 2), not only having to be limited to α ∈ (1, 2). Several numerical experiments demonstrate the effectiveness of the derived schemes. Besides, based on the numerical results, we can observe the behavior of mean first exit time, an interesting quantity that can provide us with a further understanding about the mechanism of abnormal diffusion. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01704214
Volume :
47
Issue :
13
Database :
Academic Search Index
Journal :
Mathematical Methods in the Applied Sciences
Publication Type :
Academic Journal
Accession number :
179070666
Full Text :
https://doi.org/10.1002/mma.6907