Back to Search Start Over

Hybrid nanoparticles combining nanoselenium-mediated Carica papaya extract and trimethyl chitosan for combating clinical multidrug-resistant bacteria.

Authors :
Gamal, Alaa AL-Rahman
Hussein, Mohamed Ahmed Mohamady
Sayed, Hayam A.E.
El-Sayed, El-Sayed Mahmoud
Youssef, Ahmed M.
El-Sherbiny, Ibrahim M.
Source :
International Journal of Biological Macromolecules. Oct2024:Part 3, Vol. 277, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Multidrug-resistant bacterial infections pose a significant threat to human health, prompting the exploration of innovative solutions. In this study, a new series of antibacterial hybrid nanoparticles (HNPs) were developed. The HNPs are based on a combination of selenium nanoparticles (SeNPs), synthesized using Carica papaya leaf extract, and chitosan (CS/SeHNPs) or trimethyl chitosan (TMC/SeHNPs), respectively. Comprehensive characterization using UV‐Vis, FTIR, XRD, SEM-EDX, DLS, TEM, and DSC confirmed the structure and properties of the developed HNPs. SeNPs, CS/SeHNPs, and TMC/SeHNPs showed average hydrodynamic size of 78.8, 91.3, and 122 nm, and zeta potentials of −6.35 mV, +32.8 mV, and +54.8 mV, respectively. Biological assessments were conducted, including antibacterial and antibiofilm assays against clinical strains (E. coli , S. aureus , and K. pneumoniae), along with antioxidant activity. TMC/SeHNPs demonstrated superior performance compared to SeNPs and CS/SeHNPs with the lowest minimum inhibition concentrations (MIC) against S. aureus and K. pneumoniae (3.9 μg/mL) and 62.5 μg/mL against E. coli in addition to robust antibiofilm activity. Furthermore, the TMC/SeHNPs exhibited potent DPPH free radical scavenging ability and demonstrated good biocompatibility, as evidenced by cell viability assays on HFB4 cells. Overall, TMC/SeHNPs emerged as promising candidates in nanomedicine, offering high antioxidant, antibacterial, and antibiofilm activities alongside excellent biocompatibility. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01418130
Volume :
277
Database :
Academic Search Index
Journal :
International Journal of Biological Macromolecules
Publication Type :
Academic Journal
Accession number :
179060583
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.134359