Back to Search
Start Over
BPS invariants from p -adic integrals.
- Source :
-
Compositio Mathematica . Jul2024, Vol. 160 Issue 7, p1525-1550. 26p. - Publication Year :
- 2024
-
Abstract
- We define $p$ -adic $\mathrm {BPS}$ or $p\mathrm {BPS}$ invariants for moduli spaces $\operatorname {M}_{\beta,\chi }$ of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field $F$. Our definition relies on a canonical measure $\mu _{\rm can}$ on the $F$ -analytic manifold associated to $\operatorname {M}_{\beta,\chi }$ and the $p\mathrm {BPS}$ invariants are integrals of natural ${\mathbb {G}}_m$ gerbes with respect to $\mu _{\rm can}$. A similar construction can be done for meromorphic and usual Higgs bundles on a curve. Our main theorem is a $\chi$ -independence result for these $p\mathrm {BPS}$ invariants. For one-dimensional sheaves on del Pezzo surfaces and meromorphic Higgs bundles, we obtain as a corollary the agreement of $p\mathrm {BPS}$ with usual $\mathrm {BPS}$ invariants through a result of Maulik and Shen [ Cohomological $\chi$ -independence for moduli of one-dimensional sheaves and moduli of Higgs bundles , Geom. Topol. 27 (2023), 1539–1586]. [ABSTRACT FROM AUTHOR]
- Subjects :
- *INTEGRALS
*DEFINITIONS
Subjects
Details
- Language :
- English
- ISSN :
- 0010437X
- Volume :
- 160
- Issue :
- 7
- Database :
- Academic Search Index
- Journal :
- Compositio Mathematica
- Publication Type :
- Academic Journal
- Accession number :
- 179044221
- Full Text :
- https://doi.org/10.1112/S0010437X24007176