Back to Search Start Over

BPS invariants from p -adic integrals.

Authors :
Carocci, Francesca
Orecchia, Giulio
Wyss, Dimitri
Source :
Compositio Mathematica. Jul2024, Vol. 160 Issue 7, p1525-1550. 26p.
Publication Year :
2024

Abstract

We define $p$ -adic $\mathrm {BPS}$ or $p\mathrm {BPS}$ invariants for moduli spaces $\operatorname {M}_{\beta,\chi }$ of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field $F$. Our definition relies on a canonical measure $\mu _{\rm can}$ on the $F$ -analytic manifold associated to $\operatorname {M}_{\beta,\chi }$ and the $p\mathrm {BPS}$ invariants are integrals of natural ${\mathbb {G}}_m$ gerbes with respect to $\mu _{\rm can}$. A similar construction can be done for meromorphic and usual Higgs bundles on a curve. Our main theorem is a $\chi$ -independence result for these $p\mathrm {BPS}$ invariants. For one-dimensional sheaves on del Pezzo surfaces and meromorphic Higgs bundles, we obtain as a corollary the agreement of $p\mathrm {BPS}$ with usual $\mathrm {BPS}$ invariants through a result of Maulik and Shen [ Cohomological $\chi$ -independence for moduli of one-dimensional sheaves and moduli of Higgs bundles , Geom. Topol. 27 (2023), 1539–1586]. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*INTEGRALS
*DEFINITIONS

Details

Language :
English
ISSN :
0010437X
Volume :
160
Issue :
7
Database :
Academic Search Index
Journal :
Compositio Mathematica
Publication Type :
Academic Journal
Accession number :
179044221
Full Text :
https://doi.org/10.1112/S0010437X24007176