Back to Search Start Over

Nanopores‐templated CNT/PDMS Microcolumn Substrate for the Fabrication of Wearable Triboelectric Nanogenerator Sensors to Monitor Human Pulse and Blood Pressure.

Authors :
Zhang, Tao
Yao, Chuanjie
Xu, Xingyuan
Liu, Zhibo
Liu, Zhengjie
Sun, Tiancheng
Huang, Shuang
Huang, Xinshuo
Farah, Shady
Shi, Peng
Chen, Hui‐jiuan
Xie, Xi
Source :
Advanced Materials Technologies. Aug2024, p1. 14p. 6 Illustrations.
Publication Year :
2024

Abstract

Cardiovascular diseases, which cause ≈10 million deaths annually, underscored the importance of effective blood pressure (BP) monitoring. Traditional devices, however, faced limitations that hindered the adoption of continuous monitoring technologies. Flexible triboelectric nanogenerator (TENG) sensors, known for their rapid response, high sensitivity, and cost‐effectiveness, presented a promising alternative. Enhancing their ability to capture weak biological signals can be achieved by optimizing the material's friction coefficient and expanding the effective contact area. In this work, a flexible microcolumn‐based TENG sensor with high sensitivity is developed by fabricating microcolumns of carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites on porous polyethylene terephthalate (PET) membranes using template etching and integrating these with fluorinated ethylene propylene (FEP) film. With the enhancement of microcolumn structure, the sensor possessed high sensitivity and good response, enabling it to effectively and accurately detect subtle physiological changes such as radial pulses and fingertip pulsations, with pulse wave signals highly consistent with the interbeat intervals of electrocardiograms. Leveraging these capabilities, a non‐invasive dynamic BP monitoring system capable of continuous beat‐to‐beat BP monitoring is developed. This advancement enables easier and more effective health monitoring, empowering individuals to better manage their health and improve personalized medical care. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2365709X
Database :
Academic Search Index
Journal :
Advanced Materials Technologies
Publication Type :
Academic Journal
Accession number :
178991952
Full Text :
https://doi.org/10.1002/admt.202400749