Back to Search Start Over

Orai1 and Orai3 act through distinct signalling axes to promote stemness and tumorigenicity of breast cancer stem cells.

Authors :
Zhuo, Duan
Lei, Zhenchuan
Dong, Lin
Chan, Andrew Man Lok
Lin, Jiacheng
Jiang, Liwen
Qiu, Beibei
Jiang, Xiaohua
Tan, Youhua
Yao, Xiaoqiang
Source :
Stem Cell Research & Therapy. 8/13/2024, Vol. 15 Issue 1, p1-16. 16p.
Publication Year :
2024

Abstract

Background: One of major challenges in breast tumor therapy is the existence of breast cancer stem cells (BCSCs). BCSCs are a small subpopulation of tumor cells that exhibit characteristics of stem cells. BCSCs are responsible for progression, recurrence, chemoresistance and metastasis of breast cancer. Ca2+ signalling plays an important role in diverse processes in cancer development. However, the role of Ca2+ signalling in BCSCs is still poorly understood. Methods: A highly effective 3D soft fibrin gel system was used to enrich BCSC-like cells from ER+ breast cancer lines MCF7 and MDA-MB-415. We then investigated the role of two Ca2+-permeable ion channels Orai1 and Orai3 in the growth and stemness of BCSC-like cells in vitro, and tumorigenicity in female NOD/SCID mice in vivo. Results: Orai1 RNA silencing and pharmacological inhibition reduced the growth of BCSC-like cells in tumor spheroids, decreased the expression levels of BCSC markers, and reduced the growth of tumor xenografts in NOD/SCID mice. Orai3 RNA silencing also had similar inhibitory effect on the growth and stemness of BCSC-like cells in vitro, and tumor xenograft growth in vivo. Mechanistically, Orai1 and SPCA2 mediate store-operated Ca2+ entry. Knockdown of Orai1 or SPCA2 inhibited glycolysis pathway, whereas knockdown of Orai3 or STIM1 had no effect on glycolysis. Conclusion: We found that Orai1 interacts with SPCA2 to mediate store-independent Ca2+ entry, subsequently promoting the growth and tumorigenicity of BCSC-like cells via glycolysis pathway. In contrast, Orai3 and STIM1 mediate store-operated Ca2+ entry, promoting the growth and tumorigenicity of BCSC-like cells via a glycolysis-independent pathway. Together, our study uncovered a well-orchestrated mechanism through which two Ca2+ entry pathways act through distinct signalling axes to finely control the growth and tumorigenicity of BCSCs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17576512
Volume :
15
Issue :
1
Database :
Academic Search Index
Journal :
Stem Cell Research & Therapy
Publication Type :
Academic Journal
Accession number :
178969320
Full Text :
https://doi.org/10.1186/s13287-024-03875-1