Back to Search Start Over

Prediction of glass‐forming regions in AlF3‐M(PO3)2‐R2SO4‐based poly‐anionic fluoro‐sulfo‐phosphate glasses.

Authors :
Zhu, Weijie
Wang, Weichao
Geng, Xin
Liu, Yueting
Ji, Yao
Liang, Binfeng
Source :
Journal of the American Ceramic Society. Dec2024, Vol. 107 Issue 12, p8085-8100. 16p.
Publication Year :
2024

Abstract

Phosphate glasses have garnered significant attention as host materials for various laser applications due to their high rare‐earth ion solubility, large stimulated emission cross‐section, and low nonlinear refractive index. Modification of phosphate glass composition is feasible through poly‐anion substitution, leading to poly‐anionic glasses with unique properties. This study explores the glass‐forming regions (GFRs) of AlF3‐R2SO4‐M(PO3)2‐based poly‐anionic fluoro‐sulfo‐phosphate (R/M‐FSP) glasses, a promising class of ionic glasses. Theoretical GFRs are predicted using a thermodynamic approach and then validated through a few experiments. The experimental GFRs range from K/Ba‐FSP > Na/Ba‐FSP > Li/Ba‐FSP > K/Sr‐FSP > Na/Sr‐FSP > Li/Sr‐FSP, with wider areas observed under lower cation field strength. Notably, the K/Ba‐FSP glass system exhibits high anti‐crystallization stability (approximately 140°C) and a low nonlinear refractive index (1.43 × 10–13–1.83 × 10–13 esu), advantageous for high‐power laser operations. Furthermore, a comparative study among K/Ba‐FSP glasses elucidates the general principles of manipulating glass structure and physical properties through compositional variation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00027820
Volume :
107
Issue :
12
Database :
Academic Search Index
Journal :
Journal of the American Ceramic Society
Publication Type :
Academic Journal
Accession number :
180048224
Full Text :
https://doi.org/10.1111/jace.20055