Back to Search Start Over

Thermally Stable UV-Curable Pressure-Sensitive Adhesives Based on Silicon–Acrylate Telomers and Selected Adhesion Promoters.

Authors :
Kowalczyk, Agnieszka
Kowalczyk, Krzysztof
Gruszecki, Jan
Idzik, Tomasz J.
Sośnicki, Jacek G.
Source :
Polymers (20734360). Aug2024, Vol. 16 Issue 15, p2178. 15p.
Publication Year :
2024

Abstract

A new type of UV-curable pressure-sensitive adhesive containing Si atoms (Si-PSAs) was prepared by a solution-free UV-initiated telomerization process of n-butyl acrylate, acrylic acid, methyl methacrylate, and 4-acrylooxybenzophenone using triethylsilane (TES) as a telogen and an acylphosphine oxide (APO) as a radical photoinitiator. Selected commercial adhesion promoters were tested as additives in the formulation of adhesive compositions, i.e., (i) an organic copolymer with polar groups (carboxyl and hydroxyl); (ii) a hydroxymetal-organic compound; and (iii) a quaternary ammonium salt and (iv) a chlorinated polyolefin. No fillers, crosslinking agents, or photoinitiators were used in the adhesive compositions. NMR techniques confirmed the incorporation of silicon atoms into the polyacrylate structure. The influence of adhesion promoters on the kinetics of the UV-crosslinking process of Si-PSAs was investigated by a photo-DSC technique. The obtained Si-PSAs were characterized by adhesion (to steel, glass, PMMA, and PE), tack, and cohesion at 20 °C. Finally, the wetting angle of Si-PSAs with water was checked and their thermal stability was proved (TGA). Unexpectedly, the quaternary ammonium salt had the most favorable effect on improving the thermal stability of Si-PSAs (302 °C) and adhesion to glass and PMMA. In contrast, Si-PSAs containing the hydroxymetal-organic compound showed excellent adhesion to steel. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
16
Issue :
15
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
178952877
Full Text :
https://doi.org/10.3390/polym16152178