Back to Search
Start Over
Potential of Pullulan-Based Polymeric Nanoparticles for Improving Drug Physicochemical Properties and Effectiveness.
- Source :
-
Polymers (20734360) . Aug2024, Vol. 16 Issue 15, p2151. 20p. - Publication Year :
- 2024
-
Abstract
- Pullulan, a natural polysaccharide with unique biocompatibility and biodegradability, has gained prominence in nanomedicine. Its application in nanoparticle drug delivery systems showcases its potential for precision medicine. Aim of Study: This scientific review aims to comprehensively discuss and summarize recent advancements in pullulan-based polymeric nanoparticles, focusing on their formulation, characterization, evaluation, and efficacy. Methodology: A search on Scopus, PubMed, and Google Scholar, using "Pullulan and Nanoparticle" as keywords, identified relevant articles in recent years. Results: The literature search highlighted a diverse range of studies on the pullulan-based polymeric nanoparticles, including the success of high-selectivity hybrid pullulan-based nanoparticles for efficient boron delivery in colon cancer as the active targeting nanoparticle, the specific and high-efficiency release profile of the development of hyalgan-coated pullulan-based nanoparticles, and the design of multifunctional microneedle patches that incorporated pullulan–collagen-based nanoparticle-loaded antimicrobials to accelerate wound healing. These studies collectively underscore the versatility and transformative potential of pullulan-based polymeric nanoparticles in addressing biomedical challenges. Conclusion: Pullulan-based polymeric nanoparticles are promising candidates for innovative drug delivery systems, with the potential to overcome the limitations associated with traditional delivery methods. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20734360
- Volume :
- 16
- Issue :
- 15
- Database :
- Academic Search Index
- Journal :
- Polymers (20734360)
- Publication Type :
- Academic Journal
- Accession number :
- 178952850
- Full Text :
- https://doi.org/10.3390/polym16152151