Back to Search Start Over

Latent Prototype-Based Clustering: A Novel Exploratory Electroencephalography Analysis Approach.

Authors :
Zhou, Sun
Zhang, Pengyi
Chen, Huazhen
Source :
Sensors (14248220). Aug2024, Vol. 24 Issue 15, p4920. 22p.
Publication Year :
2024

Abstract

Electroencephalography (EEG)-based applications in brain–computer interfaces (BCIs), neurological disease diagnosis, rehabilitation, etc., rely on supervised approaches such as classification that requires given labels. However, with the ever-increasing amount of EEG data, incomplete or incorrectly labeled or unlabeled EEG data are increasing. It likely degrades the performance of supervised approaches. In this work, we put forward a novel unsupervised exploratory EEG analysis solution by clustering based on low-dimensional prototypes in latent space that are associated with the respective clusters. Having the prototype as a baseline of each cluster, a compositive similarity is defined to act as the critic function in clustering, which incorporates similarities on three levels. The approach is implemented with a Generative Adversarial Network (GAN), termed W-SLOGAN, by extending the Stein Latent Optimization for GANs (SLOGAN). The Gaussian Mixture Model (GMM) is utilized as the latent distribution to adapt to the diversity of EEG signal patterns. The W-SLOGAN ensures that images generated from each Gaussian component belong to the associated cluster. The adaptively learned Gaussian mixing coefficients make the model remain effective in dealing with an imbalanced dataset. By applying the proposed approach to two public EEG or intracranial EEG (iEEG) epilepsy datasets, our experiments demonstrate that the clustering results are close to the classification of the data. Moreover, we present several findings that were discovered by intra-class clustering and cross-analysis of clustering and classification. They show that the approach is attractive in practice in the diagnosis of the epileptic subtype, multiple labelling of EEG data, etc. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
15
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
178949983
Full Text :
https://doi.org/10.3390/s24154920