Back to Search Start Over

Enhancement of Gaseous o -Xylene Elimination by Chlorosulfonic Acid-Modified H-Zeolite Socony Mobil-5.

Authors :
Wang, Yaxu
Ma, Xiaolong
Wang, Hongmei
Zhao, Dandan
Liu, Yuheng
Ma, Zichuan
Source :
Molecules. Aug2024, Vol. 29 Issue 15, p3507. 11p.
Publication Year :
2024

Abstract

It is important to develop effective strategies for enhancing the removal capacity of aromatic volatile organic compounds (VOCs) by modifying conventional porous adsorbents. In this study, a novel HZSM-5 zeolite-supported sulfonic acid (ZSM−OSO3H) was prepared through ClSO3H modification in dichloromethane and employed for the elimination of gaseous o-xylene. The ClSO3H modification enables the bonding of −OSO3H groups onto the HZSM-5 support, achieving a loading of 8.25 mmol·g−1 and leading to a degradation in both crystallinity and textural structure. Within an active temperature range of 110–145 °C, ZSM−OSO3H can efficiently remove o-xylene through a novel reactive adsorption mechanism, exhibiting a removal rate exceeding 98% and reaching a maximum breakthrough adsorption capacity of 264.7 mg. The adsorbed o-xylene derivative is identified as 3,4-dimethylbenzenesulfonic acid. ZSM−OSO3H demonstrates superior adsorption performance for o-xylene along with excellent recyclability. These findings suggest that ClSO3H sulfonation offers a promising approach for modifying various types of zeolites to enhance both the elimination and resource conversion of aromatic VOCs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
15
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
178948711
Full Text :
https://doi.org/10.3390/molecules29153507