Back to Search Start Over

Dual‐Functional LiCl Additive for Highly Reversible Zinc Metal Anode.

Authors :
Song, Yang
Liu, Yongduo
Long, Daojun
Tao, Xiongxin
Luo, Shijian
Yang, Yuran
Chen, Hao
Wang, Meng
Chen, Siguo
Wei, Zidong
Source :
Advanced Functional Materials. Aug2024, p1. 11p. 8 Illustrations.
Publication Year :
2024

Abstract

Zinc metal has emerged as a promising candidate for high‐capacity and low‐cost anodes in aqueous zinc‐ion batteries; nevertheless, it encounters serious obstacles, including low cycling stability and poor reversibility, caused by parasitic reactions and the formation of zinc dendrites. Herein, the study proposes a novel nonprotonic dimethylacetamide (DMAC)/ZnCl2/LiCl electrolyte that enables both solvation structural modulation of [ZnClx]2‐x and the cationic electrostatic shielding effect of [Li(DMAC)]+ by controlling the concentration of LiCl. The optimal concentration of LiCl electrolyte (0.28 m), which results in the highest ratio of [ZnCl3]−, strikes a balance between low desolvation energy and a high mass transfer rate while promoting homoepitaxial deposition of Zn (002). Moreover, inert [Li(DMAC)]+ ions, which possess a lower reduction potential, preferentially adsorb onto zinc protrusions, mitigating the tip effect. Leveraging electrolyte engineering, the zinc deposition/stripping process results in impressive long‐term stability, surpassing 2,800 cycles, and the Zn||MnO2 cell also achieves a stable lifespan extending beyond 1400 cycles. The research highlights the potential of LiCl as an additive in the modulation of water‐free electrolytes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
178905882
Full Text :
https://doi.org/10.1002/adfm.202410305