Back to Search
Start Over
Dual‐Functional LiCl Additive for Highly Reversible Zinc Metal Anode.
- Source :
-
Advanced Functional Materials . Aug2024, p1. 11p. 8 Illustrations. - Publication Year :
- 2024
-
Abstract
- Zinc metal has emerged as a promising candidate for high‐capacity and low‐cost anodes in aqueous zinc‐ion batteries; nevertheless, it encounters serious obstacles, including low cycling stability and poor reversibility, caused by parasitic reactions and the formation of zinc dendrites. Herein, the study proposes a novel nonprotonic dimethylacetamide (DMAC)/ZnCl2/LiCl electrolyte that enables both solvation structural modulation of [ZnClx]2‐x and the cationic electrostatic shielding effect of [Li(DMAC)]+ by controlling the concentration of LiCl. The optimal concentration of LiCl electrolyte (0.28 m), which results in the highest ratio of [ZnCl3]−, strikes a balance between low desolvation energy and a high mass transfer rate while promoting homoepitaxial deposition of Zn (002). Moreover, inert [Li(DMAC)]+ ions, which possess a lower reduction potential, preferentially adsorb onto zinc protrusions, mitigating the tip effect. Leveraging electrolyte engineering, the zinc deposition/stripping process results in impressive long‐term stability, surpassing 2,800 cycles, and the Zn||MnO2 cell also achieves a stable lifespan extending beyond 1400 cycles. The research highlights the potential of LiCl as an additive in the modulation of water‐free electrolytes. [ABSTRACT FROM AUTHOR]
- Subjects :
- *MASS transfer
*REDUCTION potential
*DENDRITIC crystals
*ELECTROLYTES
*ZINC
Subjects
Details
- Language :
- English
- ISSN :
- 1616301X
- Database :
- Academic Search Index
- Journal :
- Advanced Functional Materials
- Publication Type :
- Academic Journal
- Accession number :
- 178905882
- Full Text :
- https://doi.org/10.1002/adfm.202410305