Back to Search
Start Over
Optimal Rate of Convergence for Vector-valued Wiener-Itô Integral.
- Source :
-
ALEA. Latin American Journal of Probability & Mathematical Statistics . 2024, Vol. 21 Issue 1, p179-214. 36p. - Publication Year :
- 2024
-
Abstract
- We investigate the optimal rate of convergence in the multidimensional normal approximation of vector-valued Wiener-Itô integrals whose components all belong to a fixed Wiener chaos with coinciding orders. By combining Malliavin calculus, Stein's method for normal approximation and the method of cumulants, we obtain the optimal rate of convergence with respect to a suitable smooth distance. As applications, we derive the optimal rates of convergence for complex Wiener-Itô integrals, vector-valued Wiener-Itô integrals with kernels of step functions and vector-valued Toeplitz quadratic functionals. [ABSTRACT FROM AUTHOR]
- Subjects :
- *INTEGRALS
*INTEGRAL calculus
*VECTOR analysis
*MATHEMATICS
*TOEPLITZ operators
Subjects
Details
- Language :
- English
- ISSN :
- 19800436
- Volume :
- 21
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- ALEA. Latin American Journal of Probability & Mathematical Statistics
- Publication Type :
- Academic Journal
- Accession number :
- 178894070
- Full Text :
- https://doi.org/10.30757/ALEA.v21-08