Back to Search Start Over

Unveiling the critical role of TiO2-supported atomically dispersed Cu species for enhanced photofixation of N2 to nitrate.

Authors :
Dong Li
Yunxuan Zhao
Chao Zhou
Li-Ping Zhang
Junwang Tang
Tierui Zhang
Source :
Fundamental Research. Jul2024, Vol. 4 Issue 4, p934-940. 7p.
Publication Year :
2024

Abstract

Nitrate products are widely used in manufacturing as crucial raw materials and fertilizers. The traditional nitrate synthesis process involves high energy consumption and emission, thereby opposing the goals of zero-carbon emission and green chemistry. Thus, a sustainable roadmap for nitrate synthesis that uses green energy input, clean N sources, and direct catalytic processes is urgently required (e.g., developing a novel photosynthesis system). Here, we synthesized TiO2-supported atomically dispersed Cu species for N2 photofixation to nitrate in a flow reactor. The optimized photocatalyst yielded a high nitrate photosynthesis rate of 0.93 μmol h-1 and selectivity of ~90%, which is superior to most of the values reported thus far. Further, experimental results and in-situ investigations revealed that the atomically dispersed Cu sites in the as-designed sample significantly enhanced the separation and transfer efficiency of photogenerated carriers, adsorption and activation of reactants, and the formation of chemisorbed NOx intermediates, thereby realizing the excellent photofixation of N2 to nitrate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20969457
Volume :
4
Issue :
4
Database :
Academic Search Index
Journal :
Fundamental Research
Publication Type :
Academic Journal
Accession number :
178871004
Full Text :
https://doi.org/10.1016/j.fmre.2022.05.025