Back to Search Start Over

Cross‐scale resolution consistent network for salient object detection.

Authors :
Huang, Xiaoyu
Liu, Wei
Li, Minghui
Nie, Hangyu
Source :
IET Image Processing (Wiley-Blackwell). 8/21/2024, Vol. 18 Issue 10, p2788-2799. 12p.
Publication Year :
2024

Abstract

The salient object detection task tries to simulate the human visual system for most eye‐catching objects or regions detection. However, due to the complexity of the visual mechanisms, current methods will suffer from severe performance degradation, leading to inconsistent prediction results for the same regions, when directly adopting a model trained on a fixed resolution to evaluate at other different resolutions. Considering that consistency in predictions is essential for salient object detection, a cross‐scale resolution consistent salient object detection method, called RCNet, is proposed. Specifically, to enhance the model's capacity for generalization across images of varying resolutions and make the model implicitly learn the scale invariance, a multi‐resolution data enhancement module is constructed to generate images with arbitrary resolutions for the same scene. Moreover, to accomplish better multi‐level feature fusion, a cross‐scale fusion module is developed to fuse high‐level semantic features and low‐level detail features. Additionally, to explicitly learn the scale invariance of the salient scores, a hybrid salient consistency loss is formulated on salient object detection with different resolutions. Comprehensive evaluations on five benchmark datasets show that RCNet achieves a highly competitive result. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17519659
Volume :
18
Issue :
10
Database :
Academic Search Index
Journal :
IET Image Processing (Wiley-Blackwell)
Publication Type :
Academic Journal
Accession number :
178853908
Full Text :
https://doi.org/10.1049/ipr2.13136