Back to Search
Start Over
A Comparative Blast Mitigation Performance Evaluation of Metallic Sandwich Panels with Honeycomb, Corrugated, Auxetic, and Foam Cores.
- Source :
-
International Journal of Structural Stability & Dynamics . Aug2024, p1. 27p. - Publication Year :
- 2024
-
Abstract
- Due to the high energy absorption capability and excellent bending strength of the sandwich panels, they are mostly preferred as protective structures against explosive blast attacks. The evaluation of their blast-mitigation characteristics through experiments is highly dangerous, costly, time-consuming, and polluting for the environment. Therefore, in this presented work, a series of numerical analyses were performed to evaluate the blast mitigation of the outstanding sandwich panels with honeycomb, corrugated, auxetic, and foam cores. The masses of sandwich panels were kept constant, and their areal densities were maintained constant throughout the study to effectively compare their performance under identical air blast loading conditions. To apply the air blast loads to the designed sandwiches, 1–3kg of spherical-shaped trinitrotoluene charges were used for a 100mm stand-off distance. The sandwiches are made of high-strength AL-6XN steel and crushable aluminum foam. The rate-dependent Johnson–Cook constitutive model of plasticity and the crushable foam model with volumetric hardening were used for the evaluation of sandwich panels’ plastic deformations. The findings of the work depicted that the honeycomb core is more efficient than the other core structures of the same masses because the sandwich panels with honeycomb core provide smaller back skin deflections, globalized core crushing, and higher core energy absorption than the other sandwich panels for extreme conditions of air blast loading. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02194554
- Database :
- Academic Search Index
- Journal :
- International Journal of Structural Stability & Dynamics
- Publication Type :
- Academic Journal
- Accession number :
- 178839970
- Full Text :
- https://doi.org/10.1142/s021945542550186x