Back to Search Start Over

Energetic demands regulate sleep-wake rhythm circuit development.

Authors :
Poe, Amy R.
Zhu, Lucy
Si Hao Tang
Valencia, Ella
Kayser, Matthew S.
Source :
eLife. 7/22/2024, p1-15. 15p.
Publication Year :
2024

Abstract

Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2050084X
Database :
Academic Search Index
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
178710270
Full Text :
https://doi.org/10.7554/eLife.97256