Back to Search
Start Over
Weather Radar Calibration Method Based on UAV-Suspended Metal Sphere.
- Source :
-
Sensors (14248220) . Jul2024, Vol. 24 Issue 14, p4611. 24p. - Publication Year :
- 2024
-
Abstract
- Weather radar is an active remote sensing device used to monitor the full lifecycle changes in severe convective weather with high spatial and temporal resolution. Effective radar calibration is a crucial foundation for ensuring the high-quality application of observational data. This paper utilizes a UAV platform equipped with a high-precision RTK system and standard metal spheres to study the principles and methods of metal sphere calibration, constructing a complete calibration process and calibration accuracy evaluation metrics. Additionally, a collocated radar comparison observation experiment was conducted for cross-validation, and metal sphere calibration tests were performed on problematic radars. The experimental results indicate the following: (1) The combined application of a high-precision RTK system and a laser range camera can provide real-time position information on the metal sphere, improving the efficiency of radar target acquisition. (2) The calibration method based on UAV-suspended metal spheres can periodically conduct the quantitative calibration of Z and ZDR, achieving calibration accuracies within 0.5 dB and 0.2 dB, respectively, and supports the qualitative inspection of key parameters such as beamwidth and pulse width. (3) During field tests, a high success rate "coarse adjustment + fine adjustment + staring" sphere-finding technique was established, based on automatic switching between RHI, PPI, and FIX scanning modes. This method directs the UAV to adjust the metal sphere to the center of the radar distance bin, reducing the impact of uneven beam filling and bin crossing, ensuring the accuracy of scattering characteristic measurements. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 24
- Issue :
- 14
- Database :
- Academic Search Index
- Journal :
- Sensors (14248220)
- Publication Type :
- Academic Journal
- Accession number :
- 178699415
- Full Text :
- https://doi.org/10.3390/s24144611