Back to Search Start Over

Temporal and Spatial Variation Characteristics of the Ecosystem in the Inner Mongolia Section of the Yellow River Basin.

Authors :
Yang, Junjie
Jia, Laigen
Hao, Jun
Luo, Qiancheng
Chi, Wenfeng
Wang, Yuetian
Zheng, He
Yuan, Ruiqiang
Na, Ya
Source :
Atmosphere. Jul2024, Vol. 15 Issue 7, p827. 17p.
Publication Year :
2024

Abstract

As one of the most vital ecological regions in China, the well-being of the Inner Mongolia section of the Yellow River Basin directly hinges upon comprehending the variations in its ecosystem. The current research puts emphasis on the analysis of single-factor ecological indicators within the Mongolian section of the Yellow River and lacks summarization and analysis regarding the overall state of the ecosystem within the Mongolian section of the Yellow River. This study, using methods such as remote sensing interpretation and model simulation, combined with ground surveys, analyzes the macrostructure, quality status, service functions, and driving factors of the ecosystem in the Inner Mongolia section of the Yellow River Basin from 2000 to 2020. The results indicate that (1) in 2020, the ecosystem structure in the Inner Mongolia section of the Yellow River Basin was predominantly composed of forest, grassland, and other types of systems. (2) From 2000 to 2020, the Normalized Difference Vegetation Index (NDVI), Fractional Vegetation Cover (FVC), and net primary productivity (NPP) all showed increasing trends in the Inner Mongolia section of the Yellow River Basin, with NPP showing a slightly greater increase compared to the NDVI and FVC. (3) Over the past two decades, the overall rate of decrease in the wind erosion modulus per unit area was 1.675 t hm−2. (4) An analysis of the drivers of ecosystem changes revealed that while climate change has exerted an influence, human activities have likewise had a substantial effect on the ecosystem over the past 20 years. This study contributes to a comprehensive understanding of the current status and changes in the ecosystem, providing a decision-making basis for subsequent ecological protection and management projects. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734433
Volume :
15
Issue :
7
Database :
Academic Search Index
Journal :
Atmosphere
Publication Type :
Academic Journal
Accession number :
178698301
Full Text :
https://doi.org/10.3390/atmos15070827