Back to Search Start Over

Unique Coolant Supply Passage Arrangements to Induce Large-Scale Vortex within Turbine Blade Interior Leading Edge Chambers.

Authors :
Cai, Yang
Liu, Xinzi
Sun, Yu
Fan, Xiaojun
Wang, Jiao
Source :
Energies (19961073). Jul2024, Vol. 17 Issue 14, p3404. 19p.
Publication Year :
2024

Abstract

Gas turbines are widely applied in many fields, and blade cooling is a key way to improve gas turbines' power and efficiency. In order to explore a high-efficiency cooling method, a new variant configuration with unique coolant supply passage arrangements is proposed and explored in this paper. The numerical simulation method of solving the Navier–Stokes equations is used after mesh independence calculation and turbulence model validation. The results show that the variant structure has better streamlines distribution with double vortex flows in both the inner and outer chambers. Compared to the original configuration, the heat transfer intensity in the outer chamber is improved, and the globally averaged Nusselt number is 17.1% larger. The case with uniformly distributed nozzles has the best flow and heat transfer performance. As the nozzle number increases, the total pressure loss and friction coefficient decrease, but the heat transfer increases first and then decreases. The case of three nozzles has the best comprehensive cooling behavior. The aspect ratio has important influences on the double-vortex cooling configuration. Cases with small aspect ratios have higher local heat transfer intensity, but the flow loss is larger. The case with aspect ratio 4 has the best cooling performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
14
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
178696368
Full Text :
https://doi.org/10.3390/en17143404