Back to Search Start Over

Supramolecular Light‐Harvesting Nanoarchitectonics Toward Self‐Locked Logic Gates.

Authors :
Wang, Xuanyu
Gao, Zhao
Tian, Wei
Source :
Advanced Optical Materials. Nov2024, Vol. 12 Issue 31, p1-6. 6p.
Publication Year :
2024

Abstract

Supramolecules are considered a promising approach for molecular logic gates due to their inherent dynamic responsiveness driven by non‐covalent forces. However, the lack of input sequence dependence in these logic gates may lead to misinterpretation of outputs, compromising their reliability. This study proposes an efficient universal supramolecular Förster resonance energy transfer (FRET) platform for logic gates with self‐locking features. Specifically, well‐designed naphthalene‐based monomers serve as energy donors, while dyes such as eosin Y (EY), rhodamine B (RhB), and sulforhodamine 101 (SR101), spanning from yellow to red, are employed as energy acceptors. Leveraging large exciton migration rates (1.21 × 1014 to 1.36 × 1014 L mol−1 s−1) between donor and acceptors, FRET processes are effectively facilitated. Building upon this framework, supramolecular logic gates with self‐locking features are successfully constructed. Notably, in these logic gates, even with the correct truth table, any deviation in the order of inputs can lead to alterations in the original outputs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21951071
Volume :
12
Issue :
31
Database :
Academic Search Index
Journal :
Advanced Optical Materials
Publication Type :
Academic Journal
Accession number :
180656338
Full Text :
https://doi.org/10.1002/adom.202401463